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Quantitative Valence-bond Computations of Curve Crossing Diagrams for a 
Gas-phase SN2 Reaction: F- + CH,F- FCH, + F- 
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A quantitative curve crossing diagram for the identity S,2 reaction, F- + CH,F--+ FCH, + F-, is 
computed with the multistructure VB method, at the PS-31 + G" level with a basis set o f  double- 
zeta plus polarization quality with pseudo-potentials for the core electrons and additional diffuse 
functions. The VB value for the central barrier is ca. 11.3 kcal mol-', in agreement with a recent 
estimate based on experimental data (reference 9) and with most modern MO computations 
followed by  correlation corrections (reference 76,d). Because of the low energy of  the triple ion 
structure, F-CH, + F-, the variational curves can be  generated all the way to the crossing point, 
but beyond it the variational procedure does not terminate in the charge-transfer state despite the 
natural correlation of the VB structures to this state. The relationship between the natural 
correlation and the variational VB procedure is discussed. It is shown that this feature of  the 
variational procedure does not affect its ability to provide the key curve crossing quantities at their 
variational values. These quantities are, in turn, found t o  fo l low the trends of  the qualitative model. 
The vertical charge-transfer energy gap is large (241.8 kcal mol-'). The height of  the crossing point 
relative to the ion-dipole cluster is 37.25 kcal mol-' (ca. 15% of the gap). The resonance energy of  
the transition state is 25.9 kcal mol-'. The relationship between the barrier and the curve crossing 
quantities is discussed b y  comparison to the hydride exchange reaction, H-  + CH,H --+ HCH, + 
H - .  It is shown that the relative barriers reflect the interplay between the charge-transfer energy 
gap and the curvature wh ich  determines the height of the crossing point relative to the gap. This 
behaviour is in good agreement with the predictions of  the qualitative curve crossing model. The 
significance of the curvature factor is shown to be related to the characteristic structure-reactivity 
coefficients of the reaction (e.g., the Brsnsted coefficient). 

The curve crossing diagram has been advocated in recent years 
as a general paradigm for the conceptualization of chemical 
rea~tivity.'-~ The principal yardstick, against which the utility 
and the validity of the model have been tested, is the s N 2  re- 
action.1a*c*2 For an identity s N 2  reaction, the diagram of which 
is shown in Fig. 1, three curve crossing quantities are required 
for a discussion of reactivity patterns. 

The first quantity is the gap (Go) which corresponds to the 
vertical charge-transfer excitation from the anion X:- to the 
valence o*(C-X) orbital of the CH3-X molecule.1a~3* The 
second quantity is the curvature factor (J') which determines the 
fraction of the gap that enters under the crossing point. Since, 
for quite a few gas-phase reactions, both the crossing point and 
the barrier 2,4 may be lower than the separate reactants, it is 
customary to refer these quantities to the geometry of the ion- 
dipole cluster, and thereby avoid the less aesthetic alternative 
of using negative values for barriers and heights of crossing 
points. Thus, one is concerned with the height of the crossing 
pointfG, and with the 'central barrier', AEcs, and both refer to 
the reactant cluster C, in Fig. l.4 The third curve crossing 
quantity in Fig. 1 is the avoided crossing interaction, B, which is 
also the quantum mechanical resonance energy (QMRE) of the 
transition The central barrier thus becomes eqn. (1). 

AEcs = fG, - B (1) 

By relying on these three quantities it has proved possible to 
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Fig. 1 A qualitative curve crossing diagram for the identity S,2 process 

X -  + RX - XR + X -  

pattern computational and experimental structure-reactivity 
data in a coherent This effort has been largely 
qualitative and based on a number of simplifying assumptions 
which, no matter how useful, still require quantitative verifi- 
cations which, in turn, will also serve to refine and articulate the 
original ideas. 

Recently, it has been shown3 that curve crossing diagrams 
can indeed be computed at the ab initio level using multi- 
structure valence bond (VB) computations.6 For the hydride 
exchange S,2 reaction (X = H in Fig. 1 ) 3 a  the computations 
provide curve crossing quantities in accord with the qualitative 
expectations, and a potential-energy barrier in agreement with 
MO computations followed by correlation corrections. While 
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Table 1 Optimized geometries" for the critical species in the reaction: 

F,:- + CH,F,- F,CH, + F,- (r, I = right, left) 

Species 

Parameter CH,F F,/CH,F,(CR)b (F, CH, - - Frj-, TSb 

r(C-H >/A 1.0799 1.07 15 1.0597 
r(C-F,j/A 1.3743 1.4429 1.8832 
r(C-F,)/A - 2.5927 1.8832 
B(HCF)/deg 108.38 107.26 90.00 

a These are PS-31G*(D) values; PS = pseudopotential. C ,  = reactant 
cluster. TS = Transition state. 

Table 2 
AEc* for the reaction: 

Iondipole stabilization energy, AEid, and central barrier, 

F,:- + CH,F, - F,CH, + :F; (r, 1 = right, left) 

This study Wolfe and Kim' 

Quantity SCFb VBb SCF' MP2' MP4d 

AEida - 12.93 - 16.68 - 12.84 - 15.31 - 14.19 
AEcf" 17.66 11.35 18.54 12.93 10.14 

a In kcal mol-'. 1 kcal mol-' = 4.184 kJ mol-'. Refers to the geometries 
in Table 1. The basis set is PS-31G*(D). Results from reference 7(d) 
with full geometry optimization at the respective level. MP4//MP2/6- 
31 + G* results from reference 7(d). 

this is pleasing, a more extensive and general appraisal of the 
model as well as of the computational methodology is deemed 
necessary, and this is the general aim of this paper. 

The target reaction in this manuscript is the fluoride ex- 
change, eqn. (2), which itself has been a subject of numerous 

F1:- + CH,F, --+ F,CH, + :F1- (r, 1 = right, left) (2) 

ah inirio MO computations7 and was one of the first SN2 
reactions to be assigned an experimental central barrier.8 More 
recently, the experimental central barrier has been judged, both 
by theory7b*d.k and by new experiments,' to be too high. Thus 
the height of this particular central barrier and its estimate by 
VB theory are also of interest. Accordingly this paper presents 
VB calculations of the barrier for the reaction (2), and shows 
how the barrier arises by avoided crossing of the corresponding 
Lewis-type curves of reactants and products. The curve crossing 
quantities are calculated and compared with those in other 
reactions 3a,1 and with qualitative predictions. 1,2,4 

Theoretical Methods and Calculations 
Methods.-The multi-structure VB method used here is 

based on the same principles as other multi-structure VB 
methods,' ' , 1 2  and has been discussed before 3,6 in great detail. 
What follows here is a brief reminder of the main points of the 
method. An essential feature is the use of localized AOs or 
fragment orbitals with no delocalization tails on other atoms or 
fragments. In this respect, the method preserves the relationship 
between the VB function and the chemical structure as regards 
the assignment of the electrons to specific atoms. The wave- 
function and energy of a VB structure is computed by a 
variational mixing of an elementary VB function, built with 
Hartree-Fock optimized orbitals, with all the Brillouin states 
that represent the same VB structure, in terms of charge-type 
and spin-pairing mode, as the elementary VB function, and 

which are generated from this elementary VB function by intra- 
fragment monoexcitations. As has been shown,6dve the resulting 
set of VB functions are equivalent, to a first approximation, to a 
single VB structure whose orbitals are optimized 6e with respect 
to their size, hybridization and polarization. When the VB 
procedure involves different VB structure-types, the result is 
equivalent to a non-orthogonal MCSCF calculation of a VB 
wavefunction reduced to its set of constituent VB structures, in 
which both the coefficients and orbitals would be optimized 
simultaneously; 6e each such structure has its own specific set of 
orbitals, optimized in the presence of the other VB structures, 
but different from one structure to another.," 

In the present work the dimension of the non-orthogonal CI 
is reduced by a preliminary selection of Brillouin states in 
double zeta basis set. All unimportant Brillouin states are 
discarded, provided that the total energy rise due to this 
simplification does not exceed 2 kcal mol-' in the absolute 
energy of the diabatic wavefunction and 1 kcal mol-' in the 
adiabatic one. The VB procedure was restricted to the 'active' 
bonds, which are the two interchanging C-F bonds, eqn. (2), 
and to their respective constituent orbitals. The rest of the 
bonds (C-H bonds of the methyl moiety) and lone pairs are 
treated at  the Hartree-Fock level with allowance for the C-H 
bonds to relax and polarize by single excitations (e.g., mixing of 
<TO* configurations). The various VB functions were generated 
exactly as described before for the H -  exchange reaction. 

Calculations.-The non-orthogonal CI among the VB func- 
tions was performed by means of a program written by Lefour 
and Flament.14 The MONSTERGAUSS program was 
used for the initial Hartree-Fock optimization of the frag- 
ment and atomic orbitals as well as for the SCF geometry 
optimizations of the various critical structures for the target 
reaction: reactants, cluster and transition state. The geometry 
optimizations and VB calculations were carried out with the 
PS-31G basis set,' which involves pseudo-potentials for the 
cores of C and F, complemented with polarization functions on 
C and F and diffuse functions on F. Accordingly we refer to 
this basis set hereafter as PS-31G*(D). The exponents of the 
polarization and diffuse functions are taken from the standard 
6-13 + G* basis set. In addition, some of the curve crossing 
quantities were also calculated with the 6-31G basis set to check 
their potential basis set dependence. The charge-transfer states 
in the VB diagram were computed as explained re~ently,~" 
without the diffuse orbitals. This is in keeping with the original 
ideas that the excited states involve valence-type anion radicals. 
Inclusion of diffuse orbitals in this calculation is indeed 
irrelevant because these radical anions are unbound with 
respect to a loss of an e1ectron.l7 

Results 
Geometries of the Critical Points and Energetics of the 

Adiabatic Potential-energy Pro$le.-The geometric details of 
the three critical points are collected in Table 1. The CH,F 
parameters are in good agreement with experiment.18 The 
cluster geometry is comparable to the results of basis sets of at 
least double-zeta quality, although our distance between the 
anion and the molecule (2.59 A) is shorter in comparison with 
more extended basis sets, such as those used by Vetter and 
Zulicke 7 b  and by Dedieu and Veillard 7c (2.74 A and ca. 3 A, 
respectively). The C - F bond length in the transition state 
ranges between ca. 1.8 and 1.9 A for basis sets of double-zeta 
plus polarization q ~ a l i t y . ~ ' - ~  Our result of 1.88 A is longer than 
those of the 6-31G* and 6.31 + + G** basis sets7j,k and 
somewhat closer to the values obtained by means of the more 
extended basis sets." 

Table 2 shows the iondipole stabilization energies and 
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The energetic behaviour of the VB configurations 1-5 along 

the reaction coordinate. The geometries of reactants, reactant cluster, 
transition state, product cluster and products are referred to as RE, TS, 
C,, C, and PR, respectively. 

barriers computed at the SCF and VB levels with the PS- 
3 lG*(D) basis set with pseudo-potential. Recent results by 
Wolfe and Kim 7d  which refer to all-electron calculations in the 
6-31 + G* basis set provide a good basis for comparison, and 
are tabulated in Table 2 alongside our results. Our VB results 
have comparable accuracy to the results of Wolfe and Kim with 
respect to the absolute magnitudes of the barrier and the ion- 
dipole stabilization energy, as well as with respect to the effect 
of correlation correction on the SCF barrier. Indeed all other 
recent results indicate that the correlated barrier is lower than 
the SCF barrier by 3-6 kcal mol-' (1 kcal mol-' = 4.184 kJ 
m0l-').~'9~*'9~ While there are no definitive values for either the 
barrier or the ion-dipole energy, the most extensive calculations 
so far, by Vetter and Z~ l i cke ,~ '  lead to a central barrier of 15.5- 
17.1 kcal mol-' and ion-dipole energies of -(13.1-13.3) kcal 
mol-' (1 kcal mol-' = 4.184 kJ mol-'). Thus the VB and the 
MO + correlation barriers all agree with the recent experi- 
mental estimate of the barrier by DePuy et aL9 and indicate that 
the first experimental assignment, by Pellerite and Brauman 
of 26.2 kcal mol-' for the barrier, is too high by 9-16 kcal mol-'. 
In conclusion, the VB method takes proper account of the effect 
of correlation on the central barrier and the ion-dipole 
complexation energy. 

Discussion 
(a )  VB Conjiguration and their Energies along the Reaction 

Coordinate.-The VB structures which mix to generate the 
reaction profile for the target reaction are shown below in 
structures 1-7 which describe the possible ways to distribute the 
four electrons, of the anion F:- and the C-F bond, in those 
orbitals which participate in the bond interchange, as well as 
in the 'inactive' orbitals of the CH, moiety. Structures 1 
and 2 correspond to the covalent Heitler-London (HL) con- 
figurations which describe the spin-pairing in the C-F bonds of 
reactants and products. Structure 3 is the most stable triple-ion 
configuration with a positive charge on the central methyl 
moiety (R) flanked by two negative charges on the fluorines. 
Structure 4 known as the 'long bond s t r u c t ~ r e ' , ' ~ , ~ , ~ , ~ , ~ ~  
possesses spin-pairing of the odd electrons on the two fluorines 
and a negative charge on the methyl moiety. Structure 5 
describes the delocalization of the negative charge into the 

inactive G* orbitals of the C-H bonds of the methyl group. This 
latter structure was found to be the key3c,d for the stability of 
SiH,-, but is not expected to play a significant role in SN2 
reactions on carbon, especially when the entering- and leaving- 
groups are electronegative atoms as in eqn. (2).3cid.10 The 
remaining structures 6 and 7, with a negative charge placed on 
the methyl moiety and with an unfavourable arrangement of 
the charges, are expected to be of very high energy and will not 
concern us at the qualitative level. 

Fi: - R*-*Fr FI*-*R F[ Fi: - R +: F[ F I G  *Fr 

1 2 3 4 

5 6 7 

Fig. 2 is a plot of the VB-computed energy of structures 1-5 at 
the five critical points of the reaction coordinate: reactants and 
products, the respective ion4ipole clusters and the transition 
state. It is seen that the two HL structures, 1 and 2, intersect 
along the reaction coordinate thereby forming the spine of the 
curve crossing diagram." Since the ground states of reactants 
and products and the respective clusters are produced from the 
mixing patterns of the HL configurations,6C then the crossing 
of these two configurations is also the root cause of the barrier. 
We can therefore focus on the spine of the HL curves and dress 
this spine with the other configurations, 3-7 and thereby 
generate the two state-anchored curves, which by avoided 
crossing will become a diagram analogous to Fig. 1.1,3a Already 
at this point we note that each excited HL anchor point is 
related to the ground-state configuration below it by a single 
electron transfer, from the F:- anion to the F atom in the 
molecule, and this forms the basis for the charge-transfer 
character of the excited states in the diagram. 

(b) Construction of a Two-curve Diagram by VB Mixing.- 
The ground states of reactants and products result from the 
mixing of the HL structures with the triple ion structure 3. This 
mixing generates the ground states with the conventional Lewis 
electron-pair C-F bonds in the CH3-F molecule, as depicted 
schematically in 8 for the reactants. As the anions approach the 
molecule from infinity, the two ground states will be stabilized 
primarily by ion-dipole/induced dipole interactions leading 
thereby to the corresponding clusters C, and C,, respectively; 
F,:-/CH,-F, and F,-CH,/:F,-. The wave functions of the 
clusters are expected to be dominated, much like in the 
separated reactants and products, by VB mixing of the corre- 
sponding HL configuration with the triple ion configuration. 
For example, C, will arise primarily from the mixing of HL 
structure 1 with the ionic structure 3, while the configurations 2 
and 4-7, which are much higher in energy at this geometry, are 
assumed to mix in to a negligible extent. At this stage of the VB 
mixing we have generated two curves which are anchored in 
the Lewis ground states and at the two HL excited con- 
figurations.lf As such each one of the curves describes a 
homolytic dissociation of a Lewis bond along the S,2 reaction 
coordinate, e.g., F:- + (CH,-F) - (F:--CH,) + 'F. 

To complete the excited states of the diagram we have now to 
mix structures 4 and 5 into the excited HL points of the above 
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Fig. 3 The VB-computed curve crossing diagram for the reaction 

F,: + CH,F, --+ F,CH, + :F-; (r, 1 = right, left) 

The dashed lines indicate the natural correlation of the diabatic curves 
beyond the crossing point. The dark line indicates the adiabatic reaction 
profile resulting from avoided crossing. The reaction coordinate is 
defined in Fig. 2. The energy coordinate is represented for convenience 
as a logarithmic scale. 

curves. Consider for example, the reactant extreme in Fig. 2 
where the excited HL configuration is 2. By mixing into 2 some 
of the configuration 4 there will result a charge-transfer state 
which possesses three electrons in the C-F linkage, as shown in 
9. Two of the three electrons in this linkage occupy the o(C-F) 
orbital while the third electron resides in the o*(C-F) 
orbital.1a,‘,f*2 Further mixing of 9 with structure 5 will also 
delocalize the third electron into the (3*(CH3) orbital of the 
appropriate symmetry (al symmetry) 3a and thereby generating 
the charge-transfer state 10 with a delocalized anion radical 
(CH,F,)-. At the reactant end the charge-transfer state, 10, will 
be dominated by configuration 5 which is the lowest in energy, 
while at the cluster geometry the charge-transfer state will be 
more like 9, because of the intrinsic stabilization of 2 by the 
spin-pairing and the strong mixing of 2 with 4 as opposed to the 
weak mixing with 5.* In any event, the excited anchor point at 
the reactant extreme will be related to the ground state below it 
by a charge-transfer excitation from the anion Fl:- to the 
molecule CH, F4. Completely analogous arguments apply for 
the product extreme of the reaction coordinate where the 
excited anchor point will be the charge-transfer state which 
corresponds to a charge-transfer excitation from Fr:- to the 
F,CH,. 

These are the VB mixing patterns responsible for the identity 
of the anchor states in the qualitative curve crossing diagram in 
Fig. 1. Anywhere else along the reaction coordinate, each one of 

* The mixing rules in approximate VB theory are discussed in reference 
l(e). According to rule a [p. 171 in reference l(4] two configurations 
will mix in proportion to the overlap of the two orbitals which differ by 
a single electron occupation. Thus, 2 mixes with 5 in proportion to the 
overlap of the 2p A 0  of F, with the a*(CH,) orbital. Owing to the poor 
overlap capability of the latter orbital [references 3(c),  (d) and lo] this 
mixing will be weak even if the energy gap between the configurations is 
small. On the other hand, 2 and 4 mix strongly because the mixing is 
proportional to the overlap of 2p A 0  of F, with the axial 2p A 0  of the 
CH, moiety. The mixing of 3’with 1 is proportional to the overlap of 
2p(C) and 2p(F,). This mixing becomes zero at the product extreme 
where the C - - F, distance is infinity. The mixing patterns of 3 with all 
the other configurations can be deduced simply from the mixing rule. 

the curves will be made of a mixture of one of the HL structures 
mixed with 3-7. Each such wavefunction represents a single 
bonding situation (reactant- or product-like) the dominant 
character of which will be the mixture of a HL configuration 
with the ionic structure 3, much like a Lewis electron-pair 
structure. We therefore refer to the individual curves as ‘Lewis 
curves’. 

(c)  Natural VB Correlations and the Quantitative Two-curve 
Diagram.-The above discussion shows that the origins of the 
state correlation in Fig. 1 is the intersection of the spin-paired 
HL forms of reactants and products. Since all S,2 reactions 
share this same feature their curve crossing diagrams should be 
similar to each other and to Fig. 1. In our recent paper on the 
H -  exchange SN2 reaction it was shown that it is possible to 
compute the individual Lewis curves variationally throughout the 
reaction coordinate. This was done by carrying out two separate 
VB calculations in the two configuration subsets which are 
defined by reactant’s and product’s bonding situations. The 
reactant’s bonding situation is defined by the mixture of HL 
configuration 1 with all other configurations except for HL con- 
figuration 2 which, in turn, defines the basis for the product’s 
bonding situation. While this variational calculation went 
smoothly and completely for the H-  exchange, applying the 
same procedure to the target reaction will generate the 
appropriate variational curves up to the crossing point, but not 
beyond this point. 

Let us elucidate the quantitative problem by discussing the 
procedure for generating the curve that starts out at the 
reactant ground state. The variational procedure utilizes for 
this purpose the subset of VB configurations which constitute 
the reactant’s bonding situation namely; HL (1) with S7. As 
discussed above, at  the reactant extreme structure 1 mixes only 
with 3 and the variational wavefunction will be dominated by 1 
which is the lowest in energy of the two configurations. Near 
the cluster geometry, the variational curve is still made pre- 
dominantly from 1 and 3, but now the ionic structure con- 
stitutes the major character of the curve, and this will persist as 
we proceed along the reaction coordinate. Past the crossing 
point, the ionic structure continues to be the lowest and its 
energy gap with the higher-lying HL (1) gradually increases 
at the same time that the overlap between these two con- 
figurations gradually diminishes.* Similar behaviour applies to 
the overlap of 3 with all the other configurations in the bonding 
set.* Consequently the mixing of 3 with HL (1) and the other 
configurations in the set becomes weaker and weaker, until we 
reach the product extreme where the variational curve becomes 
purely structure 3. Exactly the same situation is expected 
whenever the ionic configuration 3 lies below the excited 
charge-transfer anchor points. In all these cases, because of the 
gradual vanishing of the 3-1 mixing, the variational procedure 
will not trace the natural VB correlation, ground state- 
charge transfer state, but, rather, will lead beyond the crossing 
point to an artificial excited state made of pure structure 3. The 
natural correlation can be retrieved, however, by use of 
Malrieu’s method of projection of an MO-CI wavefunction 
onto the VB configurations, although the variational character 
of the crossing point will be lost in the process.Ig 

While the variational procedure does not continuously con- 
nect the ground to the charge-transfer states, it still provides the 
essential curve crossing quantities in line with the qualitative 
analysis. This is illustrated in Fig. 3 which shows the computed 
curves and their avoided crossing which leads to the adiabatic 
energy profile, along the same reaction coordinate as in Fig. 2. 
Also shown in Fig. 3 are the natural anchor points of the curves, 
the two valence charge-transfer states which are computed 
separately. The curves are shown by solid lines up to the 
crossing point, and beyond it they are connected to the charge- 
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Table 3 Curve crossing quantities" for the reaction: 

Fl:- + CH,F,- F,CH, + :Fr- (r, 1 = right, left) 

Go Gc f B 

241.8 253.9 0.1467' 25.9 

23.4 
184-229' (257.7) 0.1445 26.9d 

G and B are in kcal mol-' (1  kcal mol = 4.184 kJ mol-I). f is 
dimensionless. Experimental values from reference 17(b), (c). ' This 
value refers to the gap of 253.9 kcal mol-' from the diabatic Lewis curve. 
The other value refers to the gap of 257.7 kcal mol-'. This value refers 
to curves generated from structures 1-3 only. This value was obtained 
with the 6-31G basis set. 

transfer states by dashed lines, which in turn convey the idea 
that these portions are not computed but drawn in accord with 
the natural VB correlations. 

In this manner, the computations in Fig. 3 provide all the 
ingredients of eqn. (1): the charge-transfer energy gap, the 
height of the crossing point and the QMRE quantity, B. Thus, 
despite the incomplete correlation, there is still an advantage 
in the variational procedure because it provides, in fact, the 
essential curve crossing quantities at their variational values. 
Especially important in this sense is the QMRE quantity which, 
when computed variationally, provides the resonance energy of 
the delocalized transition state relative to the most stable 
localized-bonding situations at the crossing point. Let us 
discuss now the diagram and its curve crossing quantities and 
relate them to other computed ~ a l u e s . ~ " ~ ' ~  

(d) Energetics of the Curve Crossing Diagram-Let us discuss 
some of the properties of the Lewis curves and the adiabatic 
profile by reference to Fig. 3 and Table 3. 

The gap factor. The first quantity in Table 3 is the charge- 
transfer energy gap at the separated reactants. As already 
mentioned, this gap is obtained by calculating a valence charge- 
transfer state devoid of diffuse orbitals, such that the molecule 
possesses a negative electron affinity. The closest physical 
analogue of the anion radicals in these charge-transfer states are 
the unbound temporary anions which are detected as scattering 
states in the electron-transmission (ETS) experiment.I7 Indeed 
Heinrich et aL2' have concluded that only basis sets which are 
devoid of diffuse orbitals can reproduce the trends in the 
experimental ETS electron affinities. If we stick with this 
analogy we can obtain the experimental estimate of the charge- 
transfer energy gap by use of the ionization potential 21 of F:- 
and the electron affinity17'Tc of CH,F. The so estimated 
experimental gap is shown alongside the computed Go value in 
Table 3. The uncertainty in the experimental gap derives from 
the uncertainty in the assignment of the experimental electron 
affinity of CH3F. Using the experimental assignment of 
Giordan et al.17" the resulting gap is 229 kcal mol-'; in very 
close agreement with the VB computations, while using the 
theoretical assessment of the experimental value by Lindholm 
et ~ 1 . ~ "  leads to the smaller gap which is quite different from 
the VB value. However, a rough correspondence does exist 
especially if we look at trends in the VB-computed values and 
compare them with trends in the corresponding experimental 
values or the qualitatively estimated values,'"S2 e.g., for the 
present reaction and the H - exchange reaction. 

The second quantity in Table 3 is the charge-transfer energy 
gap at the geometry of the cluster, G,. The second G, value refers 
to the gap between the adiabatic state of the cluster and the 
charge-transfer state, while the first value refers to the 
quantity from the diabatic Lewis curve. In the original 
qualitative model it was assumed that the charge-transfer 

stabilization of the iondipole cluster is negligible and that 
consequently the diabatic curve and the adiabatic potential will 
approximately coincide at the cluster geometry, much as they 
do at the reactant geometry. As can be seen, from Fig. 3 and 
the G, values in Table 3, the adiabatic profile is 3.8 kcal mol-' 
(1 kcal mol-' = 4.184 kJ mol-') more stable than the diabatic 
Lewis curves at the cluster geometry. This stabilization is due 
to the mixing of the charge-transfer configurations (9, 10) into 
the Lewis structure (8), at the cluster geometry. This mixing 
depends on the F, C distance between the anion and the 
molecule and is expected to be basis-set dependent much as the 
F,. * . C  distance itself. Thus it is expected that with more 
extended basis sets, where this distance is longer than ours, the 
mixing will be smaller and the diabatic and adiabatic curves 
will also be near coincidence at the cluster geometry. In any 
event, the 3.8 kcal mol-' difference in the gaps is only 1.5% of 
the gap itself and will lead to a negligible error (ca. 0.5 kcal 
mol-') in the use of eqn. (1). 

A more significant deviation is the difference between the gap 
value at the reactant and the cluster geometries, amounting to 
13-16 kcal mol-' ( 5 4 %  of the gap size). In the qualitative 
applications, it was assumed that the ion-dipole stabilization 
energy of the cluster will be compensated by the lowering of the 
charge-transfer state, 9, due to stabilization by spin-pairing of 
the odd electrons. Using this assumption one can use the readily 
available Go values instead of the G, values for estimating 
the central barrier in eqn. (1). While this assumption does not 
hold here the barrier error caused by using this assumption 
will be of the order of 1.7 kcal mol-I which is still satisfactory 
for semiquantitative purposes. Future applications should 
reveal whether this deviation is a pecularity of the F- 
exchange reaction or whether the assumption breaks down 
systematically. 

The f factor. According to the qualitative model the f factor 
should be small because of the localized nature of the charge- 
transfer state of type 9 and the added effect of the dominant 
mixing of the triple-ion configuration along the reaction co- 
ordinate.'" As may be seen in Table 3 the computed f value is 
indeed very small. In order to test the origins of the small 
computed f we took advantage of the fact that the VB method 
allows an explicit analysis of the effect of the various con- 
figurations on theffactor. 

For the HL curves thef,, value is 0.31 which is close to the 
corresponding value for the H-/CH, reaction (fHL = 0.33). 
Upon addition of the triplet-ion structure 3, the corresponding 
fvalues should decrease, because the mixing of 3 into the HL 
curves makes them more concave and as a result a smaller 
fraction of the gap enters under the crossing point. This effect is 
moderate in the H-/CH4 reaction where the triple-ion con- 
figuration is high-lying and the resulting f value decreases 
accordingly in a moderate fashion to 0.27. In contrast, the 
triple-ion configuration for the F-/CH3F reaction is very 
low-lying and accordingly it lowers the f factor drastically to 
0.12. 

We turn now to consider the effect of the remaining con- 
figurations on theffactor. In the qualitative model,'"*/ the other 
configurations serve to delocalize the odd electron of the anion 
radical and to weaken thereby the bond coupling between the 
two odd electrons in the charge-transfer states. The more 
delocalized the odd electron in the anion radical the less 
concave the curves become and the f factor concomitantly 
increases. In the H-/CH, reaction, addition of the remaining 
configurations generates the (CHJ- anion radical where the 
odd electron is extensively delocalized over all the identical 
C-H linkages. Accordingly f increases from 0.27, its value in 
the localized anion radical, and becomes 0.42.," On the other 
hand, in the F-/CH3F reaction, mixing of the remaining 
configurations generates a significantly less delocalized anion 
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Table 4 Central barriers and curve crossing quantities for identity S,2 
reactions 

Reaction AEct G f f G  B 

F-/CH,F 11.35 253.9 -0.15 37.25 25.9 
H-/CH, 56.80 174.0 0.42 57.7 15.9 

All values except forfare in kcal mol-' (1 kcal mol-' = 4.184 kJ mol-'). 

radical, and the corresponding f value is raised from 0.12 only 
to ca. 0.15 as recorded in Table 3. 

It follows that theffactor is a measure of the VB mixing and 
the bond coupling along the reaction coordinate. SN2 reactants 
whose charge-transfer states are delocalized (localized) will lead 
to a large (small) f value, while reactants which possess a low- 
lying (high-lying) X:- R+:X - configuration will have a small 
(1arge)fvalue. As we have noted in the qualitative applications 
of the theffactor is a measure of the sensitivity o f a  
reaction series to a change e.g., of basicity of the nucleophile. 
Thus, substrates with a low-lying R +  configuration will be less 
sensitive to substituent change, and this will be manifested in 
small Brarnsted coefficients, small Swain-Scott parameters and 
small Hammett p values. Such observations, of small structure- 
reactivity coefficients, have been made in recent years by Kirby 
et al.24 and by Jencks et ~ 1 . ~ ~  for the S,2 reactions of 
CH,0CH2X derivatives, for which the R + structure is expected 
to be dominant and indeed proved to be so. 

The B factor.  The B values in Table 3 are all quite close to one 
another. Firstly, from the second B value, it is seen that this 
quantity is determined mainly by the Lewis structures, and 
therefore resembles a classical resonance energy between the 
Lewis forms of the reactants and products. Secondly, this 
quantity is seen to be very slightly basis-set dependent, much 
like the case for the H-/CH, reaction, This is a satisfactory 
feature of a property which provides the QMRE of the 
transition state.5 

The value of B is seen to be small in comparison with the 
charge-transfer energy gap. This is important since the adiabatic 
profile remains close to the diabatic curves; a fact which allows 
the adiabatic state to be considered in terms of properties of the 
diabatic curves. The B value of 26 kcal mol-' is larger than the 
qualitatively used value of 14 kcal mol-'. Thus, while the value 
for the H-/CH4 reaction was close to the qualitative estimate 
in the present reaction the deviation from the qualitative value 
is significant. As we shall immediately show, however, this does 
not in any way affect the discussion of trends according to the 
model. 

The central barrier: discussion of an archetypal trend. Table 4 
compares the curve crossing quantities of the F-/CH,F 
reaction with those of the H-/CH4 reaction, in line with the 
barrier expression in eqn. (1). As can be seen, the gap for F- 
exchange is much larger than for H-  exchange and despite this 
relationship the former reaction possesses a much smaller 
central barrier. The reason for that is seen to lie entirely in the 
ratios between the height of the crossing point and the 
corresponding charge-transfer energy gaps. These ratios are the 
ffactors which provide a measure of the curvature or concavity 
of the curves, which in turn is determined by the strength of the 
bond coupling and the configuration mixing along the reaction 
coordinate. This was precisely the conclusion of the qualitative 
model which is now corroborated by the quantitative calcu- 
lations. Thus, while B is not a constant it is still a 'passive 
variable', and the trends in the relative barriers of identity SN2 
reactions are determined by the interplay of the charge-transfer 
energy gap and the curvature factor which is a measure of the 
bond-coupling and the configuration mixing along the reaction 
coordinate. 1 * 2 . 3 n  

Conclusions 
This paper presents a quantitative construction of a curve cross- 
ing diagram for the identity S,2 reaction, F- + CH3F- 
FCH, + F-, using the multistructure VB method.6 The VB 
value for the central barrier is ca. 11.3 kcal mol-', in agreement 
with the recent experimental estimate and with estimates of 
modern MO computations followed by correlation correc- 
t i o n ~ . ~  The most direct comparison is with the results of Wolfe 
and Kim 7d which show that the accuracy of the VB method is 
comparable to Hartree-Fock calculations followed by a good 
correlation treatment. 

Because of the low energy of the triple-ion structure, 
F-CH,+F-, the variational curves can be generated all the way 
to the crossing point, but beyond it the variational procedure 
terminates in the pure triple-ion configuration instead of the 
charge-transfer state as would be required from the natural 
correlation of the VB structures to this state.* The relation- 
ship between the natural correlation and the variational VB 
procedure is discussed. It is shown that this feature of the 
variational procedure does not affect its ability to provide 
the key curve crossing quantities a t  their variational values. 
The relationship between the barrier and the curve crossing 
quantities is discussed by comparison with the hydride ex- 
change reaction, H -  + CH,H - HCH, + H-.  It is shown 
that the relative barriers reflect the interplay between the 
charge-transfer energy gap and the curvature factor which 
determines the height of the crossing point relative to the gap. 
This behaviour is in good agreement with the predictions of 
the qualitative curve crossing model. The significance of the 
curvature factor is discussed with reference to the characteris- 
tic structure-reactivity coefficients of the reaction (e.g., the 
Brernsted coefficient). 
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